Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit

نویسندگان

  • Stefania Savoi
  • Darren C. J. Wong
  • Asfaw Degu
  • Jose C. Herrera
  • Barbara Bucchetti
  • Enrico Peterlunger
  • Aaron Fait
  • Fulvio Mattivi
  • Simone D. Castellarin
چکیده

Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis-regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of related proteins and aquaporin genes in grape (Vitis vinifera L.) under salinity sress

Due to worldwide increasing of salinity, the identification of genes conferring tolerance to plants is important. The aim of this study was to investigate salinity effects on the expression of three genes-related to proteins and aquaporin in grape (Vitis vinifera L.). Based on screening study on 18 grape genotypes, H6 and Gharashani that showed lower decrease in water potential, leaf area, leaf...

متن کامل

Effect of Potassium and Iron on Berries Resveratrol and Viniferin Accumulation and Antioxidant Capacity of ‘Bidaneh Sefid’ Grape (Vitis vinifera L.) Cultivar

Nutrition management in growth season has a main effect on production and accumulation of secondary metabolites in grapevine berries. In this research the effects of foliar application of potassium sulfate (K; 0, 1.5, and 3%) and iron chelate (Fe; 0, 0.5, and 1%) on accumulation of resveratrol and viniferin and antioxidant capacity of ‘Bidaneh Sefid’ grape berries was evaluated. This study was ...

متن کامل

Water Deficit Increases Stilbene Metabolism in Cabernet Sauvignon Berries

The impact of water deficit on stilbene biosynthesis in wine grape (Vitis vinifera) berries was investigated. Water deficit increased the accumulation of trans-piceid (the glycosylated form of resveratrol) by 5-fold in Cabernet Sauvignon berries but not in Chardonnay. Similarly, water deficit significantly increased the transcript abundance of genes involved in the biosynthesis of stilbene prec...

متن کامل

The peripheral xylem of grapevine (Vitis vinifera). 1. Structural integrity in post-veraison berries

During the development of many fleshy fruits, water flow becomes progressively more phloemic and less xylemic. In grape (Vitis vinifera L.), the current hypothesis to explain this change is that the tracheary elements of the peripheral xylem break as a result of berry growth, rendering the xylem structurally discontinuous and hence non-functional. Recent work, however, has shown via apoplastic ...

متن کامل

A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries

Transcriptional studies in relation to fruit ripening generally aim to identify the transcriptional states associated with physiological ripening stages and the transcriptional changes between stages within the ripening programme. In non-climacteric fruits such as grape, all ripening-related genes involved in this programme have not been identified, mainly due to the lack of mutants for compara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017